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Abstract— We consider the image fusion problem involving
remotely sensed data. We introduce cokriging as a method
to perform fusion. We investigate the advantages of fusing
Hyperion with ALI. This evaluation is performed by comparing
the classification of the fused data with that of input images and
by calculating well-chosen quantitative fusion quality metrics. We
consider the Invasive Species Forecasting System (ISFS) project
as our fusion application. The fusion of ALI with Hyperion
data is studied using PCA and wavelet-based fusion. We then
propose utilizing a geostatistical based interpolation method
called cokriging as a new approach for image fusion.

Index Terms— Image Fusion, Cokriging, Wavelet, PCA, Re-
mote Sensing, Hyperion, ALI

I. INTRODUCTION

In the remote sensing domain, image fusion is a technique
which deals with the limitations of sensors in capturing high
spectral/spatial resolution multispectral images [1]. In this
paper, we study fusion of two remotely sensed data sets
(ALI and Hyperion) using PCA and wavelet-based fusion.
We also propose a new image fusion approach based on
cokriging [2]–[4]. Cokriging is an interpolation method for
a variable available at scattered data points using multiple
variable values of different natures at nearby locations, and
thus we found it suitable in addressing data/image fusion
needs. We perform preliminary experiments for fusion based
on cokriging using our given data sets as a preliminary proof
of concept experiment.

The goal of our project is to eventually evaluate our fusion
results by performing classification of the fused data and
by measuring the classification accuracy using ground truth
from the ISFS application. In the absence of ground truth
we consider other quantitative quality metrics. In this paper,
we study the advantages of fusing Hyperion bands with their
corresponding ALI bands by studying the amount of details
gained. We also mention problems that need to be addressed
when designing future fusion metrics.

In Section II we give an overview and definition for data
and image fusion. Then, in Section III we give an overview of
our application project, ISFS, and its objectives. We describe
the data sets used for our experiments in Section IV. In

*The work of this author was supported by the Science Foundation under
grant CCR-0098151.

Sections V and VI the fusion methods used in our experiments
are described. We mention evaluation methods we considered
for our experiments’ results in Section VII and present the
results in Section VIII. After explaining the advantages and
limitations of the used fusion methods, we give an overview
of the cokriging interpolation method in Section V-C, propose
it as a new approach for data fusion, and perform preliminary
tests on our data set. Finally, we give conclusions and overview
of our future work in Section IX.

II. DATA AND IMAGE FUSION

Data fusion was originally defined as a group of methods
and approaches using multi-source data of different natures
to increase the quality of information contained in the data
[5]. This and other similar definitions were considered rather
restrictive later. More recent definition of data fusion describes
it as “a process dealing with the association, correlation, and
combination of data and information from single and multiple
sources to achieve refined position and identity estimates, and
complete and timely assessments of situations and threats,
and their significance” [6]. Thus, while the original definition
conveys the idea of the combination of data, the new definition
also considers the study of correlation among data of different
sources to generate and evaluate hypothesized associations
among data [6], and in fact this is the definition we are
considering for data fusion in this paper by studying the
relationship between ALI and Hyperion data through image
fusion.

Image fusion refers to data fusion where the data used
are images of multiple sources. There are many objectives of
image fusion including image sharpening, improving registra-
tion/classification accuracy, temporal change detection, feature
enhancements, etc; [5]. In this paper, our objective for image
fusion is the improvement of classification accuracy for our
target application (ISFS, see Section III) as well as feature
enhancement which can lead to better classification.

III. ISFS: INVASIVE SPECIES FORECASTING SYSTEM

Our underlying application involves the analysis of invasive
species through a collaborative project among NASA Office
of Earth Science and the US Geological Survey called Inva-
sive Species Forecasting System (ISFS) [7], [8]. An invasive



species is defined as any non-native species whose introduction
causes or is likely to cause harm to the economy, environment,
or to human health. The economic damages caused by invasive
species to agricultural producers and commercial fishery alone
run to billions of dollars each year [8]. Tamarisk, Russian
olive, leafy spurge, and water hyacinth are examples of various
invasive species under study. The data sets used in this paper’s
experiments are from one of the four main Tamarisk study sites
here in Colorado.

While many vegetation types may appear to have the
same color when viewed in the visible spectrum, they can
be differentiated from each other when viewed in the infra-
red or ultra violet spectra [9]. Even when viewed in the
non-visible spectrum, reflectance of these vegetation types
may be of different degrees and from nearby portions of
the spectrum. For this reason hyperspectral data is of great
importance to the ISFS project. However, one would need to
choose its appropriate bands for a particular study based on
the application. In this paper we try to investigate candidate
choices for Hyperion bands to be used for the ISFS project
by learning the amount of detail that they introduce to the
classification compared to their corresponding ALI bands.

IV. DATA SETS

Our data sets were acquired in July 5, 2004 from “Debeque”
(near Grand Junction, Colorado, U.S.A) site which is one
of the four study sites for ISFS’s Tamarisk mapping effort
[7]. The Advanced Land Imager (ALI) and Hyperion are two
instruments on the Earth Observing 1 (EO-1) platform. Hy-
perion is a hyperspectral instrument with 242 bands covering
wavelengths ranging from 356 nm to 2577 nm at a spatial
resolution of 30 meters per pixel. ALI on the other hand, has
only 10 bands, one of which is panchromatic at 10 meters
spatial resolution and 9 of which are multispectral at a 30
meters spatial resolution, covering wavelengths ranging from
433 nm to 2350 nm. Thus, ALI data represent low spectral res-
olution data while Hyperion provides high spectral resolution
images. ALI is considered a successor system to the Landsat
Thematic Mapper series, and thus 5 of its multispectral bands’
wavelengths correspond to that of Landsat 7. Hyperion is the
only civilian hyperspectral instrument operating in space.

For this paper, we used two data sets one obtained from ALI
and one from Hyperion instrument, containing approximately
the same area. We had the 9 multispectral bands of ALI as
well as all Hyperion bands for the region under study.

Our objective of performing various image fusion tech-
niques on two images, one with low spectral resolution and
one with high spectral resolution, is to study how much we
can improve the quality of the classification performed on a
Landsat/Landsat type image using hyperspectral data. Having
both ALI and Hyperion on the same platform reduces temporal
effects on registration accuracy greatly.

The ALI data were georeferenced, while the Hyperion
data did not have any associated map information. Thus, we
registered Hyperion data to ALI, using ALI as our reference
image. We performed registration in a two step process:

TABLE I
ALI AND MATCHING CALIBRATED AND NOT CORRUPTED HYPERION

BANDS USED (CWL = CENTRAL WAVELENGTH)

ALI Spectral CWL Matching CWL
MS Range (nm) Used (nm)

Bands (nm) Hyperion
Bands

9 436.99
1 433-453 441.6 10 447.17

(MS-1’)
11 457.34
... ...

2 450-515 484.8 14 487.87
(MS-1) 15 498.04

16 508.22
18 528.57
... ...

3 525-605 567.2 22 569.27
(MS-2) 23 579.45

... ...
25 599.80
28 630.32
... ...

4 630-690 660 31 660.85
(MS-3 ) ... ...

33 681.200
42 772.78
43 782.95

5 775-805 790 44 793.13
(MS-4) 45 803.30

49 844.00
50 854.18

6 845-890 865.6 51 864.35
(MS-4’) ... ...

53 884.70
106 1205.07
... ...

7 1200-1300 1244.4 110 1245.36
(MS-5’) ... ...

115 1295.86
141 1558.12
... ...

8 1550-1750 1640.1 149 1638.81
(MS-5) ... ...

160 1749.70
195 2102.94
... ...

202 2173.53
204 2193.73
... ...

9 2080-2350 2225.7 207 2224.03
(MS-7) 208 2234.12

211 2264.32

first we obtained the transformation and rotation parameters
using the algorithm mentioned in [10], which is based on
optimization of mutual information between two images. First
we applied the obtained transformations and rotations on the
Hyperion data to obtain a registered Hyperion to ALI image.
Then, we refined the registration using ENVI 3.5 [11] using
nearest neighbor linear interpolation and by manual selection
of ground control points. Then, we chose a subset of size���������
	��

from both ALI and Hyperion data sets. Thus, we
have 242 bands of Hyperion and 9 bands of ALI, all from the
same location and of the same size.



V. APPROACH

In this section we go over three image fusion techniques we
used in our study of fusion of ALI and Hyperion. Two well
known methods for image fusion are PCA and wavelet-based
fusion. We also go over details of cokriging as an interpolation
method and propose using it for image fusion.

A. PCA

Principle Component Analysis (PCA) is a statistical tech-
nique that transforms a multivariate data set of inter-correlated
variables into a data set of new uncorrelated linear combi-
nations of the original variables [5]. There are two ways of
using PCA for image fusion: one approach is concerned with
fusion of one multispectral data with an image with higher
spatial resolution. The second approach considers fusion of
images with the same spatial resolution [5], [12]. In the latter
approach, images are stacked together as one multispectral
image, and PCA is performed on all of the concatenated data.
We use the second approach of using PCA for image fusion
in this paper.

B. Wavelet-Based Fusion

Briefly, a wavelet decomposition of any given signal (1-D
or 2-D) is the process that provides a complete representation
of the signal according to a well-chosen division of the time-
frequency (1-D) or space-frequency (2-D) plane [13]. Through
iterative filtering by low-and high-pass filters, it provides
information about low- and high-frequencies of the signal at
successive spatial scales. For fusion purposes, multi-resolution
wavelet decomposition separates high- and low-frequency
components of the two given data sets and these components
are then recomposed differently in the reconstruction phase.

In our experiments, we are using a Daubechies filter [13]
of size 2 and a Mallat Multi-Resolution Analysis (MRA) [14]
decomposition and reconstruction scheme. Figure 1 illustrates
the wavelet-based fusion idea, where high- and low-resolution
data are independently decomposed using the MRA wavelet
decomposition process. Then, components from both decom-
positions are combined during the reconstruction phase to
create the new fused data. In this scheme and similar to [15],
where different spatial resolution data are fused, we fuse the
different spectral resolution data in the following manner: low-
frequency information of the lowest spectral resolution data
(e.g., ALI data) is combined with high-frequency information
of the highest spectral resolution data (e.g., Hyperion data).
In our experiments, the same Daubechies filter size 2 is used
for both decomposition and reconstruction phases and for both
types of data.

C. Cokriging

We first give an overview of the cokriging interpolation
method, and then propose utilizing this method for data fusion.

Fig. 1. Wavelet-Based Fusion

1) Cokriging as an Interpolation Method: Cokriging has
been traditionally used in mining and geostatistics appli-
cations [2]–[4]. Cokriging is a method for estimation that
minimizes the variance of the estimation error by taking into
consideration the spatial correlation between the variables
of interest and the secondary variables. In other words, a
function U at location 0 is estimated as a linear combi-
nation of both the variable of interest and the secondary
variable(s). That is, in the case where we have one sec-
ondary variable, the estimate of U at location 0, ��� , using
the two variables as mentioned in [4], is given by ��������������� � � ��� ���� ���� �"!
�$# where � � # �&% #(')'(')# � � are primary
data at * nearby locations, ! � #+! % #('(')'(#,! � are secondary data
at - nearby locations, and

� � # � % #)'('('(# � � and
 � #  % #(')'('.#  �

are cokriging weights which are needed to be found and
calculated. The estimation error, / , is calculated as / �01 32 1  �5476,8 # where 496:�<; � � #(')'('(# � � #  � #('(')'.#  � # 2 �
= ,
and 876>�?; 1 � #)'('(')# 1 � #A@ � #)'(')'(#A@ � # 1  = . The goal of cokriging
is to find the weight vector 4 6 such that the variance of the
error is minimized and the estimate for �1  be unbiased, that
is, the mean error residual is zero.

There are various types of cokriging methods. The distinc-
tion arises from the way in which constraints are imposed.
Three common types of cokrigingA are: ordinary, simple,
and standardized cokriging (see [3], p. 204, and [4], ch. 17).
Here we illustrate the ordinary cokriging. Ordinary cokriging
requires that

� �������� � � �
and

� �� ���� � �CB in the above
equation. These two constraints are there to make our estimate
unbiased, or to minimize the variance of our estimation error.



From the definition of variance, we haveDFEHG ; / = � 4 6+IKJ 4� �L � �L � � � � �NMPOHQ ; 1 � 1 � =
� �L � �L �  �  �NMROHQ ; @ � @ � =
� 	 �L � �L � MPOHQ ; 1 � @ � = 2 	 �L � � � MROHQ ; 1 � 1  =
2 	 �L �  �NMROSQ ; @ � 1  = � MROHQ ; 1  1  = '

We leave the proof of why the two mentioned constraints en-
sure unbiasedness of our estimate as an exercise for the reader.
So now we have an optimization problem with two constraints.
This is where we take advantage of Lagrange multipliers [16].
Let our Lagrange multipliers be T � and T % . Then, we are trying
minimize

DFESG ; / = subject to the two mentioned constraints by
solving for coefficients

� � ')'(' � � #  � '(')'  � # T � # T 	 , whereDFEHG ; / = �U4 6 IKJ 4 � 	 T � ; �L �V�W� � � 2 �
= � 	 T %X; �L� ���  � = '
The next step is taking partial derivatives of the above

equation with respect to all * � - cokriging variables and
the two Lagrange multipliers and setting them to zero. Then,
we have the following * � - � 	

equations to solve:�L �V�W� � � MPOHQ ; 1 � 1 � = � �L �����  � MROSQ ; @ � 1 � = � T � � MROHQ ; 1  1 � =
for ;VY:� � 'V'�' * = #�L ����� � � MROSQ ; 1 � @ � = � �L �V�W�  � MROSQ ; @ � @ � = � T % � MROHQ ; 1  @ � =

for ;�YZ� � '�'V' - = #�L ����� � � � �
, and

�L �����  � � B '
Once the above system of equations is solved, we have

the necessary coefficients
� � # � % #)'(')'(# � � #  � #  % #(')'(')#  � to es-

timate function
1

at location B . Note that the above mentioned
method works only for point estimation.

Instead of having one set of secondary variables @ � ')'('[@ � ,
we may use multiple sets of secondary variables. Each addi-
tional set of secondary variables \ � '(')' \^] will introduce a
new set of coefficients _ � ')'(' _(] and a new lagrange multiplierT�` .

For the general case where we have a set of variables (as
oppose to just 2 sets, one primary and one secondary), our
linear system will be as follows:b I cced Bgf b�h T f � b I Bi Bjf
, where I is the covariance (or its estimate) matrix of all
known variables’ pair, and I  is the vector of pairwise

covariances between the unknown variable
1  and all other

known variables.T is the vector of all lagrange multipliers T � '(')' Tlk . c is a
vector of matrices

i � ')'(' i k . Each matrix
i � #+mRn^o � '('(' a�p is of

size (number of points in m 6rq variable set)
� a . All elements

in the m 6rq column of
i �

are one and all other entries are zero.h
is the vector of all coefficients, and

i  is a column vector
of of size a �3� of all elements under I  on the right hand side
of the equation. Similarly to ensure unbiasedness, this vector
is made of a 1 on top and all zeros for the rest of entries. It
can also be proven that in order for the above system to have
a solution, we need I to be positive definite.

2) Cokriging as a Fusion Method: While PCA and
wavelet-based fusion have been traditionally used for image
fusion, they have their own shortcomings. For PCA most
information is gained if all calibrated and visually good quality
multispectral input bands are used (rather than a selective
subset). PCA results are also very sensitive to the selected area
for fusion [5]. Also, PCA is a general purpose approach and
no application-oriented information is used for PCA. Wavelet
based fusion can deal with images of different spectral and
spatial resolutions. However, this method cannot handle cases
where data is scattered and rather sparse (either in spatial or
spectral dimension), or when input images differ greatly in
either their spectral or spatial resolutions.

Thus, we think using cokriging can help us integrate data of
various sources with different spatial and spectral resolutions
according to the application in mind. Our image/data fusion
problem is then considered as an interpolation problem where
we want to estimate frequencies at missing data points for
data with low spatial resolution, or re-estimate or come up
with better frequencies for data points with lower spectral
resolution. That is, we can perform cokriging as a fusion
method either in spatial or spectral domain.

In spatial domain, location values for our interpolation
problem are either the geographic coordinates of data points
or their pixel coordinates in high spatial resolution image.
We will have two sets of variables in our problem to deal
with: data with high spatial resolution and data with low
spatial resolution. The first variable will have a value at almost
all specified locations while the second variable will have
missing values since it has lower spatial resolution. Our goal
will be to come up with the missing values for the second
variable through cokriging. That is we are increasing the
spatial resolution of the image with lower spatial resolution.

Similarly, when performing fusion in spectral domain, we
have two sets of variables. One is our image with high
spectral resolution and the other is the image with low spectral
resolution which we want to improve. In this case, center
of wavelength intervals of each data set serves as the loca-
tion/coordinate values. Each band of data with high spectral
resolution will have a reflectance value at each interval while
the low spectral data will have some missing values.



VI. EXPERIMENTS

In this section we go over details of the experiments we
performed using three image fusion techniques for our study
of fusion of ALI and Hyperion.

A. PCA

We performed fusion of ALI and Hyperion data using the
PCA approach to see how the classification of the fused data
would change with respect to classification of data when using
only either the ALI or Hyperion data. To do so we performed
3 series of PCA transformations on three sets of data:s 9 bands of ALI data.s Calibrated bands of Hyperion which do not appear cor-

rupted visually (total of 140 bands as shown in Table I).s All ALI bands and Hyperion bands mentioned above
stacked together as one multi-spectral data set (we did
not have to worry about their spatial resolutions since
they all share the same spatial resolution). Thus, we had
a data set with 149 bands.

From each case’s resulted PCs, the first set of PCs is chosen
is such a way that it contains at least 99% of the original data
sets’ information content (defined as ratio of the sum of their
eigenvalues to the sum of all PCs eigenvalues).

B. Wavelet-Based Fusion

TABLE II
RECOMMENDED HYPERION BANDS TO FUSE WITH EACH ALI BAND

BASED ON CORRELATION VALUES (C)

ALI Matching Hyp C
MS Bands Band w/ Least C Value
1 (MS-1’) 10 0.861991
2 (MS-1) 15 0.859726
3 (MS-2) 25 0.843684
4 (MS-3) 33 0.83889
5 (MS-4) 45 0.782766
6 (MS-4’) 53 0.773323
7 (MS-5’) 113 0.772634
8 (MS-5) 160 0.708357
9 (MS-7) 198 0.16961

For wavelet based fusion we fused each band of ALI data is
fused with one chosen Hyperion band whose wavelength range
lies within that ALI band’s wavelength range. That is each ALI
band can be fused with one of many corresponding Hyperion
bands. We performed two sets of wavelet based fusions based
on how we chose the Hyperion band to be fused with each
ALI band:s In the first experiment, we chose Hyperion bands to be

fused with ALI based on our target application. That
is, from candidate Hyperion bands we selected the one
among those whose wavelength shows a typical vegeta-
tion reflectance in general, and a reflectance of vegetation
types of interest to ISFS in particular, has the highest
reflectance [7]. The 9 chosen Hyperion bands for fusion
with 9 bands of ALI are underlined in Table I.

s In the second experiment, we choose bands that yields
inputs with the highest variations, regardless of the appli-
cation. That is from the list of Hyperion candidate bands
for fusion with each ALI band, we chose the Hyperion
band which is the least correlated to the corresponding
ALI band. The chosen Hyperion bands for this experi-
ment with their correlation values are shown in Table II.

C. Cokriging

Since both multispectral ALI and Hyperion data have the
same spatial resolution, we can only perform fusion on the
spectral dimension. That is, we can improve spectral quality of
ALI by cokriging it with both ALI and Hyperion data. Looking
at Table I, we can see there are some wavelength ranges which
are not covered by ALI data. In particular, considering only
calibrated bands of Hyperion which did not seem visually
corrupted, wavelengths covered by Hyperion bands 17, 26-
27, 34-41, 46-48, 54-105, 116-140, 161-194, and bands 220-
224 are not covered by ALI bands. Thus, one could create
8 new bands of ALI through cokriging, where each new ALI
band will cover the missing intervals of the spectrum. Another
fusion goal might also be to interpolate ALI only at a particular
wavelength of interest, based on application.

Fig. 2. ALI and Hyperion Reflectance in Their Spectral Domain

Figure 2 shows the reflectance at one pixel both with the
Hyperion and ALI sensors. Our experiments deal with esti-
mating ALI values at missing intervals by using both ALI and
Hyperion, and investigate how we can mimic Hyperion’s trend
at wavelengths of interest for ALI. This is done by by first
interpolating ALI at one wavelength location at each interval
by estimating ALI values at wavelengths matching centers of
wavelength ranges for Hyperion bands 17, 26, 37, 47, 77, 134,
and 180. In the second experiment, we get a smoother ALI
coverage, by estimating ALI at wavelength centers of Hype-
rion bands 17, 26, 37, 39, 47, 57,77,97,130,134,138,170,180,
and 190. Finally, we examine how cokriging would perform
if we were to reconstruct ALI at every single interval where
we have Hyperion coverage. This demonstrates how cokriging



performs for the spectral fusion of ALI with Hyperion. In
practice, a user could specify the intervals in which he/she is
interested to have ALI coverage based on the application, and
thus only a few new/fused bands will be constructed for ALI
through this process.

VII. EVALUATION METHODS

Classification of fusion results and comparison with classi-
fications obtained by using either ALI or Hyperion data is the
ideal way of evaluating our fusion results for our ISFS project
purposes. However, this would require ground truth data which
is not yet available, although it should soon be acquired from
field measurements. Thus, for this study, we use other spectral
quality metrics.

While there are a few fusion quality metrics introduced by
[17], [18], they present some limitations in our experimental
framework. In particular, the previous metrics only deal with
data of gray scale with values between 0-255. Additionally,
these measures do not handle multi-spectral data.

Since texture is one of the main characteristics usually
used for classifying images [19], [20], we propose to utilize
texture-related measurements as our fusion quality metrics.
Haralick [19] first proposed using a co-occurrence matrix to
calculate various statistical texture properties for an image.
A co-occurrence matrix calculates the number of occurrences
of all pairs of gray level which are separated by a distancet

along a given direction. From the co-occurrence matrix,
several texture measurements can be computed among which
are variance and entropy. For evaluation of our wavelet-
based fusion results, we propose to use the variance of co-
occurrence matrices as a fusion quality metric. That is, for each
input and fused image, we calculate a co-occurrence variance
image based on variances computed from local co-occurrence
matrices [19], [20]. Since a higher mean image variance is
associated with a higher amount of texture, an image with a
higher mean of its variance image will also probably result
in a more accurate classification. Having more texture in
our fusion result will indicate that some information was
gained from each of the input images. While using statistical
texture measures will tell us how different each fused result is
compared to input bands, we also need to ensure that our fused
result contains information from each input band as well. Thus,
for our wavelet based fusion, another spectral quality metric is
considered: correlation. We calculate correlation of each fused
band to each of their input bands. The idea is that each fused
band need to be highly correlated with its input bands while
having more texture associated with it.

VIII. RESULTS

This section summarizes the fusion results obtained from
our PCA, wavelet-based fusion, and cokriging experiments.
For PCA and wavelet-based fusion experiments, as a qualita-
tive validation of the fusion methods, we first performed clus-
tering using k-means algorithm with u ��v and a maximum of
15 iterations on both results and input. Then, we evaluated the
clustering results by calculating statistical texture measures as

TABLE III
MEAN OF VARIANCE IMAGES OF ALI, HYPERION, AND FUSED BANDS IN

FUSION THROUGH PCA, V= MEAN OF VARIANCE IMAGE

ALI V Hyp V Fused V
143.98 137.64 180.10

proposed by Haralick and mentioned in Section VII. For the
cokriging experiment we show preliminary results of fusion
performed on one pixel in the spectral domain.

For PCA, we performed clustering on the first set of PCs
that contained more than 99% of the original multispectral
image information, that is, the first 3 PCs of ALI data, the
first 7 PCs of Hyperion data, and the first 9 PCs of fused
data. Results are shown in Figure 3. When using PCA, only
the overall mean of variance images can be calculated. Table
III shows that this overall variance of the PCA-fused image
has increased compared to the PCA results obtained only from
ALI or Hyperion data.

Fig. 3. Classifications of PCA Results of ALI and Hyperion Images
Separately and Classification of Their PCA Based Fusion Results

First 3 PCs First 7 PCs First 9 PCs
of ALI of Hyperion of Fused

Figures 4 and 5 show k-means classifications performed
on all 9 bands of ALI, the chosen 9 bands of Hyperion
in both wavelet based fusion experiments, and the 9 bands
of fused results respectively. Tables IV and VI show mean
values of variance images calculated as pointed out in Section
VII. We see that in both experiments, the first 7 fused bands
have higher variance than each of their associated ALI and
Hyperion input bands. We also see in Table V, that the
first 7 fused bands in both experiments are highly correlated
with their associated Hyperion band. Thus, while the spectral
quality of high spectral resolution data is saved in fused bands,
fused bands have more texture associated with them. In both
experiments, band 8 of fused data has more variance than its
input Hyperion band but less that its associated ALI band. This
is partly due to the fact that ALI band 8 is rather noisy and
corrupted. In both cases no improvement was gained in fused



Fig. 4. Classifications of Input ALI and Hyperion Images to Wavelet Based
Fusion Experiment 1 and Its Result

9 Bands of ALI 9 Hyperion 9 Fused Bands
Bands

Fig. 5. Classifications of Input ALI and Hyperion Images to Wavelet Based
Fusion Experiment 2 and Its Result

9 Bands of ALI 9 Hyperion 9 Fused Bands
Bands

band 9. In the first experiment, there is a greater increase in
variance images of the fused results than that of experiment 2.
This is why we see more detailed clustering results in Figure
4 than in Figure 5. The overall varinace quantities confirm this
since in the second experiment we see overall improvement
over Hyperion data only and not over ALI. In general, wavelet-
based fusion works better on the first 7 bands. However, this
method can be used to reduce the effect of noisy data in ALI
data in bands 8 and 9.

In our preliminary results for the cokriging, Figures 6,7, and
8 show that as we increase the number of wavelengths at which
the ALI data is interpolated, we can construct ALI bands
which mimic Hyperion’s performance while incorporating
ALI’s values. Of course, one will choose intervals of interest
to perform this cokriging so that instead of dealing with 242

TABLE IV
MEAN OF VARIANCE IMAGES OF ALI, HYPERION, AND FUSED BANDS IN

WAVELET BASED FUSION, EXPERIMENT 1

V= Mean of Variance Image
ALI V Hyp V Fused VwRx

77.62 y{z 85.63 | x 113.84wW}
99.49 y xr~ 116.96 | } 138.72w��

139.51 y }�� 158.87 | � 183.63w��
193.03 y }�� 192.84 | � 212.16wW�
169.97 y ��� 176.24 | � 200.32w�~
168.54 y ��� 180.82 | ~ 208.95wW�
164.22 y xr��~ 157.81 | � 197.47w��
344.53 y xr~�� 190.52 | � 261.85w z 260.68 y x z � 179.91 |�z 240.52

Overall
V 179.73 159.96 195.27

TABLE V
CORRELATION OF FUSED DATA WITH HIGH SPECTRAL RESOLUTION

INPUT FOR WAVELET-BASED FUSION, EXPERIMENT 1 AND 2

C = Correlation Value
Exp1: Hyperion C Exp2: Hyperion C

Fused Pairs Fused Pairsy{z
��| x 0.929 y xr� ��| x 0.956y xr~ ��| } 0.949 y x�� ��| } 0.965y }�� ��| � 0.955 y }�� ��| � 0.972y }�� ��| � 0.952 y ��� ��| � 0.969y ��� ��| � 0.913 y ��� ��| � 0.934y ��� ��| ~ 0.890 y ��� ��| ~ 0.914y xr��~ ��| � 0.873 y x�xr� ��| � 0.901y xr~�� ��| � 0.592 y xr~�� ��| � 0.679y x z � ��|�z 0.385 y x z � ��|�z 0.826

bands of Hyperion, or only 9 bands of ALI, one can get a full
spectrum coverage through about 17 ALI bands (9 original
and about 8 or more fused ALI bands).

IX. CONCLUSION AND FUTURE WORK

Experiments for the fusion of ALI and Hyperion data
using PCA, wavelet-based fusion, and cokriging have been
performed. Fusion results based on PCA and wavelets show
that texture, measured through variance, can be improved
through fusion, while preserving almost all the input origi-
nal information. Variance and correlation measurements were
utilized to validate the results and form the basis for a new

TABLE VI
MEAN OF VARIANCE IMAGES OF ALI, HYPERION, AND FUSED BANDS IN

WAVELET BASED FUSION, EXPERIMENT 2

V= Mean of Variance Image
ALI V Hyp V Fused VwRx

77.62 y xr� 90.14 | x 101.65w }
99.49 y x�� 111.12 | } 118.27w �

139.51 y }�� 174.84 | � 176.30w �
193.03 y ��� 217.32 | � 225.68w �
169.97 y ��� 169.88 | � 182.35w�~
168.54 y ��� 166.87 | ~ 184.36wW�
164.22 y x�xr� 182.49 | � 197.00w��
344.53 y xr~�� 190.52 | � 205.10w z 260.68 y x z � 184.84 |�z 173.18

Overall
V 179.73 165.34 173.77



Fig. 6. Fusion by Cokriging ALI: Estimating 1 ALI Value in Center of Each
Wavelength Interval Where ALI Data is Missing

Fig. 7. Fusion by Cokriging: Estimating up to 3 ALI Values Each Wavelength
Interval Where ALI Data is Missing

Fig. 8. Fusion by Cokriging: Estimating ALI Values in All Hyperion Interval
Centers Where ALI Data is Missing

fusion quality metrics definition.
A new fusion approach involving cokriging was also pre-

sented, and preliminary fusion experiments were performed
with the intent of improving the spectral resolution of ALI
data by fusing ALI with Hyperion data. Results show that
new fused ALI bands can be created and mimic the spectral
behavior of the Hyperion spectral signature.

Future work will include validation of all of the previous
results using ground truth, generalization of the cokriging
experiments to spatial and spectral fusions, and new fusion
quality metrics definitions.

In particular, it would be extremely useful to design a
quantitative fusion metric which can deal with input images of
different sizes (different spatial resolutions) as well as being
able to come up with a fusion quality index for multispectral
fused images.
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